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Executive Summary 

Although the technologies change, the same old issues seem to stay around. In the world of computer 
security, it is often the users with a new ‘need’ who push the network administrators for fewer restrictions. 

One of the latest examples of this can be seen in the discussion of whether or not to allow ‘mobile code’ 
through the firewall onto a secure company intranet. Users need the tools to complete their work but more and 
more applications are being built around web browsers using mobile code in to transfer and share information 
over the Internet. 

This paper discusses the differences between two types of mobile code, Microsoft ActiveX controls and Java 
Applets, and the security risks of both. Finally, the paper will gives alternative suggestions on what a can be 
done to allow some users to use mobile code, while not putting a secure intranet at risk. 

Introduction 

"The risks of downloading and running an unknown person’s code on your machine is clear. If 
the code has a virus attached, it can infect your machine. If the program is a Trojan Horse, it can 
take over your machine for its own purposes while appearing to do something useful. How can 
we be sure that a program someone says is useful hasn’t been hijacked to do something nasty?" 
1 

Today, organizations depend on IT systems to perform essential, mission-critical functions. So when a user 
wants to add a new technology onto a protected intranet, the risks must be balanced against the benefits. In 
fact, the new technology should only be introduced if the need is driven by a true business requirement and 
does not increase risk beyond an acceptable level .2 

One technology that requires a risk-benefit analysis prior to introduction onto a secure intranet is mobile code. 
Mobile code is a mini-application that has a specific task. The term ‘mobile’ is derived from the fact the 
code (mini-application) can be transferred from one computer to another with the same or different operating 
systems and/or hardware. This allows for tremendous functionality and transportability.  

Imagine a program developer writing a piece an application which is independent of the type of computer, the 
operating system, or the version of other software installed on a computer. Then picture the same application 
being able to perform a task by itself or in conjunction with other pieces of mobile code (mini-applications) on 
the same computer, or with other. What this type of code can do is limitless. Unfortunately, while the 
functionality is increased, the risk is also increased.  

This functionality has not gone unnoticed by software developers. One growing use of mobile code is in the 
user of application development. The use of web browsers as the interface between the user and the 
computer is increasing. Web browsers are like mobile code, they are independent of the type of operating 
system and computer hardware. This opens the available market to all computers, not just PC-based, Apple or 
Linux operating systems. With the web browsers acting as the interface for applications, mobile code is used 
to transmit and share information over the Internet for these applications. Coupled with web browsers, mobile 
code is a very strong tool. Information can be shared between all types of computers, running all types of 
operating systems. 

There are several types of mobile code that can be categorized by what they can do. The Department of 
Defense puts mobile code into three categories :3 

Category 1:  

Broad functionality, allowing unlimited access to a user’s computer and can do whatever a user 
can do (e.g., send e-mail, read the hard disk, surf company’s intranet, change passwords, etc.). 
Once the code is installed on the user’s machine, there is no control over what it does. There are 



known vulnerabilities with few or no security countermeasures. Examples are: (a) ActiveX, 
and (b) when used to execute mobile code: Windows Scripting Host, Unix Shell Scripts, DOS 
Batch Scripts. 

Category 2:  

Full functionality with limited control by the user on what the code is allowed to do. There are 
known security vulnerabilities but there are also countermeasures or safeguards to these. 
Examples are: Java Applets, Visual Basic for Applications, LotusScript, PerfectScript, and 
PostScript. 

Category 3:  

Limited functionality, which is very restrictive in the actions it can perform. There are known 
vulnerabilities, but there are continuous security safeguards being developed. Examples of 
types of Category 3 mobile code are: JavaScript, Visual Basic Script, Portable Document Format 
(PDF), and ShockWave/Flash. 

A major risk of mobile code is that user’s can download and execute the code without even being aware of 
what is happening since the code runs in the background. If a user doesn’t know a program is running, how 
can a user be sure the program is not implementing destructive instructions? For example, everybody has 
seen the e-mails at Christmas time that are sent around which have attached files of dancing reindeer or 
singing Christmas trees. Embedded in these programs could be a malicious program. For example, every 
time the reindeer dance or the tree sings the program could scan the user’s hard disk (or company secure 
intranet) by searching on key words, and e-mail these files to the program developer. Remember, if 
malicious code can get into a secure intranet, it can get out. 

While there are three broad categories of mobile code, there are three characteristics shared by all code 
across category boundaries: 

The developer of the mobile code can be self-identified or anonymous – signed or unsigned;  
The user knows and trusts the developer or doesn’t know and therefore doesn’t trust the 
developer – trusted or untrusted;  
The actions of the code can be limited or unlimited in what it can do on the user’s computer.  

The two types of mobile code that will be discussed here are Java Applets and Microsoft’s ActiveX 
controls.  

ActiveX 

The ActiveX control is a Microsoft technology that provides tools for linking desktop applications to the 
Internet. They can be attached to e-mail or downloaded from a known or unknown site on the Internet. What 
makes ActiveX control different from Applets is security. Security is the responsibility of the user – nothing is 
built into the Microsoft ActiveX development environment to protect the user from programs that are intended 
to do the user harm. Often these malicious programs are "hidden" in other programs to entice the user to 
download the code. In fact, ActiveX does not have a security model, it has a trust model, and the trust model 
is black and white: you either trust the code and let it run unhampered on your computer, or you don’t. 4 

Once the ActiveX control is installed on a user’s computer, it can do anything the user can do. For 
example, ActiveX controls can insert harmful code into the user’s operating system, surf company’s 
secure intranet, change a user’s password(s), or retrieve documents off the user’s hard disk or 
network drives and then mail them offsite.  

In efforts to provide some assurance to users of ActiveX controls are safe, Microsoft has introduced an 
electronic process to identify the developer of the code and provide some assurance the code has not been 
changed. This is done through digital signatures and digital certificates. However, digital signatures and 
certificates are only precautions, not guarantees the code is safe.  

For example, last year a Microsoft digital certificate was "stolen" by a computer hacker and used to gain 



Microsoft customers trust5,6., This is proof a signature can be spoofed or stolen. This example reinforces the 
phrased used in the ActiveX security workshop report: "The ultimate problem with any signature scheme is 
that safe controls can come from untrusted sources, and unsafe controls can come from trusted sources." 7 

At the time of this writing, MITRE Corporation has published over 31 common vulnerabilities and exposures 
(CVE) listed for ActiveX controls.8 MITRE Corporation is a not-for-profit organization that provides systems 
engineering, research and development, and information technology support to the government. It operates 
federally funded research centers for the Department of Energy, the Federal Aviation Administration and the 
Internal Revenue Service. 

In using the general categories of high, medium and low, the National Institute of Standards and Technology 
(NIST) has assigned a risk level for ActiveX controls as a HIGH. Although a relative term, here "high" refers to 
a threat-source that is highly motivated and capable. Controls to prevent stop the threat-source are not 
effective. Once the attack is launched, it may result in the (1) loss of major tangible assets or resources; (2) 
harm or impede and organization’s mission, reputation, or interest; or (3) in human death or serious injury. 9 

A comprehensive list of ActiveX concerns is in Appendix A. 

Java Applets 

Java Applets are also mini-applications. They are developed using Java and have a structured security 
environment in which the developer can implement specific security rules for the Applets to follow once they 
are downloaded to a user’s computer.  

Additionally, Java Applets should not be confused with JavaScript. These are two different things, developed 
by different companies. JavaScript is a product of Netscape. 

  

If the user does not ‘trust’ the an Applet, Java security model requires the untrusted Applets to be only run in a 
"sandbox" where  its actions are limited. This puts a lot on the user. Many users will click yes to any 
message/checkbox so they are not hindered in viewing a web page. 

However, hostile Applets still pose a security threat, even within a sandbox. An Applet can consume or exploit 
resources improperly or cause a user to perform actions he might not normally do. Some examples of hostile 
Applets exploits include: denial of service attacks, mail forging, etc. Also, many bugs have been found in the 
implementation of Applets that will allow the security features to be sidestepped. 10 

Java security has been broken many times because of developers not implementing their code based on the 
Java security model.11 At the time of this writing, MITRE Corporation has published over 14 CVEs for Java 
Applets.12 

In using the general categories of high, medium and low, NIST has assigned risk level for Applet controls as 
MEDIUM. The definition of "medium" is a motivated and capable threat-source, but controls are in place that 
may stop an attack. If the attack was successful, the attack may result in: (1) the loss of expensive of assets 
or resources; (2) the violation or harm of an organization’s mission, reputation, or interest; or (3) human injury. 
13 

Differences between Java Applets and ActiveX controls 

Java Applets and ActiveX controls are similar in the sense they are a type of mobile code. They both are mini-
applications developed to perform a specific task. However, the similarity stops there. The security for the 
Java Applets and ActiveX controls is significantly different. Security for ActiveX controls is all or nothing. By 
loading an ActiveX control on to their computer, the user has made the decision to trust the control not to do 
anything bad. Once loaded, there is no boundary to what the control can do. ActiveX controls are downloaded 
one, and remain on the computer until removed by the user. 

Contrary, Applets have security built into their design. The user can often define what the Applet can and 



cannot do. Additionally, Applets are downloaded into the user’s computer RAM. Therefore, once the computer 
is shutdown, or restarted, the Applet goes away. However, only the Applet is gone, the actions taken by the 
Applet while it is in RAM are not undone. 

A limited analogy, which might help to explain the difference in security controls between the two types of 
mobile code, is a traveler on an airplane. A traveler buys a ticket to go to Japan. 

After the traveler is allowed into the airport, this is the result if the traveler uses Microsoft’s ActiveX control 
rules: 

  

There are no ticket collectors to see if he is getting on the correct airplane  
No airport security  
The traveler can go where he wants, on any airplane, to any destination, and do anything he 
wants – there is nobody to stop him  
The traveler can even fly the airplane if he wants to  
The traveler is trusted to behave.  

Similarly, once an ActiveX control is granted access to the user’s computer, there is no way to force the 
control to obey any rules and do only what the user thought it would do. The ActiveX control is trusted to 
behave. 

If the traveler is using the Java Applet’s rules,  

  

Ticket collectors check to see if his ticket allows him access to the airplane he is trying to get on 
and only allows him to board the airplane his ticket allows him to board;  
Airport security is there to make sure the traveler obeys the rules while in the airport;  
The traveler is limited to the passenger areas of the airport and airplane and this is enforced by 
airport security;  
The traveler must obey the specified rules as defined by the airport.  

  

Similarly, Applets must obey the security rules that are put into place by the developer, using the Java security 
model. This security model not infallible - implementing the security model is complicated and rules are not 
always followed. Additionally, as with airport security, Java security can be sidestepped and there is always 
the danger the user’s computer, or company’s network, can be hijacked.  

Although this analogy is limited and cannot go fully into all the nuances of ActiveX and Applets, it does show 
the basic differences in the security of each. 

JavaScript 

For the sake of completeness, a comparison between Java Applets and JavaScript is being included. As 
stated earlier, Java Applets are ‘mini-applications’ which are developed using Java, a Sun Microsystems 
technology. Applets are separate pieces of software that need to be downloaded to be used. JavaScript is a 
Netscape product and is totally different from Applets. Unlike Applets, JavaScript does not create mini-
applications. Instead, JavaScript is code that is embedded into web pages. When web pages are downloaded, 
the code that formats the page for viewing, Hypertext Markup Language (HTML), can include JavaScript. The 
actions are very limited and most importantly, JavaScript does not have the capability to allow remote users 
onto a computer. 

Some examples of what JavaScript can do are: pop-up messages when a user’s mouse rolls over a picture on 
a web page, display the current date on a web page, or display a scrolling message at the bottom of the web 
page.  



JavaScript has limited functionality and cannot allow a person from outside the intranet access to the intranet 
without permission. For this reason the DoD feels JavaScript only poses a limited risk to the user and the 
user’s network. 14 

Managing the Risks 

In order for an intranet to be secure and the risks that do exist to be managed and reduced to an acceptable 
level, the type of attacks that a mobile code can initiate must be understood. There are four basic types of 
attacks: (1) attacks which modify a system (user’s computer, network server, etc.); (2) attacks which invade 
the user’s/company’s privacy; (3) attacks that use up all the available resources to as not to allow anyone else 
to user the system; and (4) attacks which are annoying but don’t cause any real harm.15 

The first type of attack, modification to a system, is the most dangerous. Memory can be erased, processes 
can be killed, data can be altered, and once one piece of data is called into question, all data is suspect. 
Applets and ActiveX are capable of launching this type of attack. When correctly designed and implemented, 
a sandbox can limit Applets actions. However, ActiveX has no safeguards against this type of attack. 

Invasion of the users privacy is almost as dangerous as system attacks. Company private information can be 
sent via e-mail to the general public. Financial data could be stolen from a competitor and used to the 
advantage of the company who initiated the attack through mobile code. Businesses would loose customers if 
the customers did not feel their credit card numbers were not safe on the business’ computers. Although 
neither the systems nor its data are damaged, this type of attack can seriously damage a company is 
sensitive data is made public. 

Denial of service (DoS) attacks are annoying and can tie up a company’s computer resources fighting the 
malicious code, instead of servicing customers. The computers and the networks don’t actually come to harm. 
DoS attacks are not as serious as the first two attacks described but they can cost a company customers and 
revenue. 

The final type of attack which mobile code can launch is annoying attacks that don’t cause any harm, but 
interrupt the business day. An example of this type of attack is the button that jumps around the screen that 
the user can’t click to shut down a program. Or unwanted sounds or pictures could popup on a user’s screen. 
Worker productivity could decline if every five minutes the screen goes blank or an unwanted picture pops up. 
The cost in network administrator time alone is enough to cost the company money. 

The security risks outlined above are not new. What is new is the way in which these types of attacks can be 
launched. To launch an attack on a computer system, the attacker must be inside the system. If the attacker 
can’t get inside, an agent (ActiveX control or Applet) of the attacker can do just as much harm, and so much 
the better if the agent is invited into the system. 

So why do people insist on using mobile code even knowing the security risks? The part of the answer is 
mobile code is highly functional and reusable. Once an Applet or ActiveX control is written, it can be reused 
over and over again. Also, for novice programmers, ‘slick’ features can be added quite easily using code 
written by someone else. Additionally, ActiveX controls can be shared among Microsoft applications (Access, 
Excel, Word, etc.). 

Also, as stated in the introduction of this paper, mobile code is being used with new software applications that 
are web browser based. This increases the functionality and the efficiency for a application which must share 
data over the Internet. 

However, user be warned – the tool of choice for hackers is mobile code. In fact, so many of the hacker 
attacks use mobile code to the extent the National Security Telecommunications and Information Systems 
Security Committee (NSTISSC) recommends using older browsers, such as Mosaic, for use in DoD .16 [Note: 
Under Executive Order (E.O.) 13231 of October 16, 2001, "Critical Infrastructure Protection in the Information 
Age", the President has redesignated the National Security Telecommunications and Information 
Systems Security Committee (NSTISSC) as the Committee on National Security Systems (CNSS).]17 

The older browsers do not support mobile code. While this may appear to be an extraordinary measure, put 
into the context of network sensitivity that contains trade secrets, pricing information, etc., it indicates the 
seriousness of the risk incurred using mobile code. Many organizations have chosen to mitigate the risk of 



mobile code by using the latest version of web browsers, but filter out all Java Applets and ActiveX controls to 
the extent possible. 

Security involves constantly evaluating and mitigating risks. The risk of allowing Java Applets and ActiveX 
controls through a firewall indiscriminately is high. Accordingly, the overall need to introduce mobile code an 
intranet should be sufficiently justified through a business case, a risk assessment and a risk mitigation 
plan. 

The risks can be reduced if precautions are taken, but many times the precautions are difficult to enforce. As 
stated earlier, the DoD categories mobile code into three categories. Also stated earlier are three 
characteristics which mobile code can have. If mobile code’s risk is assigned using these categories and 
characteristics, as the DoD has done, the risk of allow mobile code through a firewall may be reduced.  

The DoD has chosen reduced the risks by implementing the following policy: 

The definition of an assured channel referenced in Category 2 above is a network communication link that is 
protected by a security protocol providing authentication and data integrity, and employs US Government 
approved cryptographic technologies whenever cryptography is used.  

The following protocols and mechanisms meet the requirements of authentication and data integrity protection 
for an assured channel: 

Internet Protocol Security (IPSec)  
Secure Sockets Layer (SSL)  
Transport Layer Security (TLS)  
Secure Multipurpose Internet Mail Extension (S/MIME)  
Digital code signing using DoD-approved PKI signing certificate or other National Security 
Administration (NSA)-approved high assurance guards with link encryption methodology.  

These extreme measures show how seriously the DoD takes the threat risk of using mobile code. 
Unfortunately, not all companies can implement such an expensive solution and resort to using firewalls which 
can be configured to allow only ‘signed and trusted source’ pieces of mobile code onto the intranet, or not. 
Often it is an all or nothing type of configuration. All types of ActiveX controls may pass through the firewall, or 
no ActiveX controls may pass through the firewall. 

Alternatives 

While the risks for allowing mobile code into an intranet are high, there are some alternatives in providing this 
service to users.  

1. Employ the use of modems: 

DoD Mobile Code Policy 18 

Category 1 allowed 
if: Signed Trusted source 

Approved PKI signing 
certificate

Unsigned 
requires 
waiver

Category 2 allowed 
if:

Signed Trusted source Over an "assured channel" 

Unsigned Stand-alone computers only

Category 3 Maybe used

Mobile code in e-
mail

‘…automatic execution of all categories of mobile code in e-mail bodies 
and attachments shall be disabled."



A stand alone computer connected to a modem would allow a user to connect directly to the network 
which requires the use of mobile code. This option would not put the company’s intranet at risk by 
isolating the user from the intranet, while allowing the user access to the Internet sites that use mobile 
code. 

2. Separate network outside the intranet: 

Establish a parallel network for a limited number of users. This "green" network could be connected to 
a company’s Internet connection at their DMZ. This would provide firewall protection for the green 
network. While this option is costly, it would not put the intranet at risk. 

3. Establish one or several terminals with a direct connection to the Internet. If there are no disk drives 
in which staff can down load information to the transfer it to their desktop, theoretically the secure 
network is safe. 

Final Word 

Be aware! If a network doesn’t meet the needs of the user, the user will find a way to have his/her needs met. 
If mobile code is blocked for an intranet, and the user strongly feels the information is needed, he/she will 
download this information at home, and just bring it in on a disk. If a malicious code is present on the disk, it 
will then be present on your secure intranet and all the safeguards that the network security staff has put into 
place will be for nothing.  

Appendix A  

  

A Comprehensive Listing of ActiveX Security Concerns19
 

  

1. ActiveX controls run directly on the users hardware and can be invoked remotely (via the Internet).  
2. Microsoft uses the digital signature technology Authenticode. However a digital signature or 

certificate does not guarantee the control is safe. It is up to the user to decide if the control is safe.  
3. Avoiding Internet Explorer and Outlook does not make a user safe from ActiveX problems. Many third 

party applications use the ActiveX controls as part of their ordinary operation.  
4. The decision to install software should be based on the capability of the software. The capability cannot 

be assured with ActiveX controls. Instead, the decision to install the control must be based on the 
source of the control, which has been proven not to be trustworthy.  

5. An ActiveX control has all the privileges of the current user and there is no mechanism for 
restricting the privileges of the control.  

6. There is no security model for ActiveX; ActiveX has a trusted model. Either you trust the control or 
you don’t.  

7. Scripts can use controls in ways unanticipated by the original control author. This leads to 
unexpected behavior that can be used to violate security policy.  

8. Scripts can invoke controls to run in the background. A user might not even know a script is using 
controls, and it may be impossible to determine beforehand which controls are being used (as 
in an HTML document). As a result, a user might not be able to make informed decisions on whether to 
open such documents.  
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